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DIFFERENTIAL CHARACTERISTICS

OF THE FLOW FIELD IN A PLANE OVEREXPANDED JET

IN THE VICINITY OF THE NOZZLE LIP

UDC 533.6.011.72V. N. Uskov and M. V. Chernyshov

A method of theoretical investigation of the flow field in a two-dimensional (plane–parallel or axi-
symmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The
changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity
and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio
in the plane jet, and ratio of specific heats of the gas.
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Introduction. Governing Relations. Many properties of a supersonic jet of a gas are determined by
the specific features of its flow in the vicinity of the nozzle exit (nozzle lip). For instance, the initial curvature of
the boundary of an axisymmetric jet is responsible for the development of streamwise Taylor–Görtler vortices [1–6],
the shape of the incident shock wave determines the flow vorticity in the compressed layer behind the shock wave,
and the boundary-layer separation from the nozzle walls can be predicted by analyzing the properties of the shock
emanating from the nozzle lip and from the jet boundary in an inviscid flow.

The curvature of the shock emanating from the nozzle lip during the exhaustion of a plane overexpanded jet
is theoretically considered in the present paper on the basis of differential equations of dynamic compatibility [7].
This quantity is shown to be an important parameter of the problem, used to analyze the changes in shock-wave
intensity, Mach number, static and total pressures in the compressed layer behind the shock wave, and curvature of
the jet boundary in the vicinity of the nozzle lip. The study is performed in a wide range of the basic parameters
of the overexpanded jet of an inviscid perfect gas.

An overexpanded jet exhausted into the ambient space is characterized by the jet pressure ratio n = p/pn,
the Mach number M at the nozzle exit, and the ratio of specific heats γ. It is assumed in the paper that p and M are
the flow parameters in the nozzle-exit section in the vicinity of the nozzle lip (point A in Fig. 1); pn is the ambient
pressure. The shock-wave intensity is J = pn/p = 1/n. The maximum value of J (Jmax = (1 + ε)M2 − ε, where
ε = (γ − 1)/(γ + 1)) corresponds to the normal shock in the exit cross section and determines the lower boundary
of the theoretically possible jet pressure ratio nmax < n < 1 (nmax = 1/Jmax).

The flow behind the incident shock AT is supersonic for n∗ < n < 1 and subsonic for nmax < n < n∗, where
n∗ = 1/J∗, and the special intensity

J∗(M) =
M2 − 1

2
+

√(M2 − 1
2

)2

+ ε(M2 − 1) + 1

corresponds to deceleration of the flow with the Mach number M to the critical velocity behind the shock wave.
The following values of intensities are also called special [7, 8]:

Baltic State Technical University “Voenmekh,” St. Petersburg 190005; uskov@peterlink.ru;
mvcher@newmail.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83,
May–June, 2006. Original article submitted November 26, 2004; revision submitted August 17, 2005.

366 0021-8944/06/4703-0366 c© 2006 Springer Science + Business Media, Inc.



o

b

s

A

T

B

x

y

t

Fig. 1. Schematic of the flow of a plane overexpanded jet within the “first barrel.”
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Fig. 2. Jet pressure ratios that refer to the special points of the shock wave (a) and to the jet
boundary and the flow behind the shock (b) in the vicinity of the nozzle lip.

Jl(M) =
M2 − 2

2
+

√(M2 − 2
2

)2

+ (1 + 2ε)(M2 − 1) + 2, JΓ(M) = M2 − 1. (1)

The first of them determines the shock wave deflecting the flow to the greatest angle β(M, J, γ) with a fixed Mach
number ahead of this shock, and the second expression determines the intensity of the shock wave deflecting the
flow to the maximum angle, as compared to all other shock waves of an identical intensity (with different Mach
numbers ahead of these shocks). Special intensities correspond to the jet pressure ratios nl = 1/Jl and nΓ = 1/JΓ.
For all M > 1, the inequalities 1 < JΓ < J∗ < Jl < Jmax and, correspondingly, nmax < nl < n∗ < nΓ < 1 are
satisfied.

The dependences nmax(M), nl(M), and n∗(M) of an overexpanded jet on the Mach number ahead of the
shock wave are shown by curves 1–3 in Fig. 2a and b, and the dependence nΓ(M) is plotted as curve 4 in Fig. 2a.

The derivatives of various gas-dynamic variables of the jet flow suffer a discontinuity on the incident shock
and are related by local differential conditions of compatibility [7] in the form

Ni2 = Ci

4∑
j=1

AijNj (i = 1, . . . , 3), (2)

where Ni2 and Nj are the nonuniformities of the flow behind and ahead of the shock wave, respectively; the
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coefficients Ci and Aij depend on M, J , and θ. The nonuniformities N1 = ∂ ln p/∂s, N2 = ∂θ/∂s, and N3

= ∂ ln p0/∂n characterize the nonisobaricity, the curvature of streamlines, and the vorticity of the flow with a
constant total heat; N4 ≡ Kσ is the shock-wave curvature. Conditions (2) determine the nonuniformities of the
flow in the compressed layer immediately behind the shock of curvature found if the flow field ahead of the shock
wave is known.

The condition of isobaricity of the flow (N12 = 0) along the free surface (jet boundary) AB (see Fig. 1)
determines the sought curvature of the shock

Kσ = − 1
A14

3∑
j=1

A1jNj , (3)

which affects the curvature N22 ≡ Kτ of the jet boundary:

Kτ =
C2

A15

3∑
j=1

(A2jA14 − A1jA24)Nj .

Dependence (3), equations of motion of a two-dimensional gas flow ahead of and behind the shock in the
“natural” coordinate system (s, n)

M2 − 1
γM2 N1 +

∂θ

∂n
+ N4 sin θ = 0, γM2N2 = −∂ ln p

∂n
,

∂p0

∂s
= 0,

and the known relations between the shock-wave shape and intensity and Mach numbers on both sides of the
shock [7]

J = (1 + ε)M2 sin2 σ − ε,

tan |β| =

√
Jmax − J

J + ε

(1 − ε)(J − 1)
Jmax + ε − (1 − ε)(J − 1)

, M2 =

√
(J + ε)M2 − (1 − ε)(J2 − 1)

J(1 + εJ)

(σ is the angle between the shock wave and the flow velocity vector ahead of the shock wave) determine, after some
transformations, the local changes in intensity and Mach number behind the shock in the direction τ along the
shock wave:

dJ

dτ
= −2(J + ε)(A1N1 + A2N2 + A3N3 + qKσ),

dM2

dτ
= −[1 + ε(M2

2 − 1)]
(M2N22

1 − ε
+

N32

(1 + ε)M2

)
sin (σ − β).

(4)

Here c =
√

(J + ε)/(Jmax + ε), q =
√

(Jmax − J)/(J + ε), A1 = s[1 − (1 − 2ε)(M2 − 1)]/[(1 + ε)M2],
s =

√
(Jmax − J)/(Jmax + ε), A2 = c[(1 + ε(M2 − 1))/(1 − ε) − q2], and A3 = c[1 + ε(M2 − 1)]/(Jmax + ε).
Curvature of the Shock Wave in a Plane Overexpanded Jet. Let, for certainty, the parameters of

an isentropic flow ahead of the incident shock be described by the model of a cylindrical source (see Fig. 1). This
model is usually used to describe exhaustion from a wedge-shaped (with a half-angle θ > 0) or, in a particular case,
contoured (θ = 0) nozzle. Differentiation of the known relations [9] allows us to find flow nonisobaricity ahead of
the shock wave on the nozzle lip:

N1 = −γM2 sin θ/[(M2 − 1)r]

(r is the distance from the nozzle lip to the plane of symmetry). As the streamlines are straight and there is no
vorticity, we have N2 = N3 = 0. Relation (3) makes it possible to analyze the influence of the problem parameters M,
n, γ, and θ on the specific features of the flow field in the vicinity of the nozzle lip. In particular, the shock-wave
curvature depends monotonically on the nozzle half-angle (is proportional to sin θ). In all further calculations, we
consider the dimensionless curvature K−

σ = rKσ/ sin θ and the ratio of specific heats γ = 1.4.
At low Mach numbers, the value of K−

σ is positive (the shock wave AT in Fig. 1 is downward convex in
the vicinity of the nozzle lip) and increases as a function of shock-wave intensity in the interval (1; Jp), tending to
infinity as J → Jp (Fig. 3a). The intensity Jp(M) ∈ (Jl; Jmax) (the so-called constant-pressure point) is found from
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Fig. 3. Curvature of the incident shock wave versus its intensity: M < Ma (a), Ma < M < Mb (b),
Mb < M < Mc (c), and M > Mc (d).

the condition A14 = 0 and always corresponds to a subsonic flow behind the incident shock. The corresponding jet
pressure ratio np = 1/Jp is shown by curve 5 in Fig. 2. For J > Jp, the curvature is negative. For all special values
of intensity other than Jp, the shock-wave curvature is finite. In particular, as J → 1 (degeneration into a weak
discontinuity), as J → Jmax (normal shock), and at J = JΓ(M), it equals

lim
J→1

K−
σ = − (1 − 2ε)M2 − 2(1 − ε)

(1 − ε)M(M2 − 1)
, lim

J→Jmax
K−

σ = − M2

(1 − ε)(M2 − 1)
,

lim
J→JΓ

K−
σ = − [(1 − 2ε)M2 − 2(1 − ε)]

√
M2 − 1 + ε

(1 − ε)
√

1 + εM(M2 − 1)
.

As the Mach number increases to Ma =
√

(2 − ε)/(1 − ε) = 1.483, there arises a minimum curvature (Fig. 3b),
first, at the point J = 1. The jet pressure ratio nmin = 1/Jmin corresponding to the minimum shock-wave curvature
is plotted by curve 6 in Fig. 2a. The value of the shock-wave curvature at the minimum point decreases to zero at
a Mach number Mb = 1.571 and intensity Jb = 1.242 and then becomes negative (Fig. 3c). For an arbitrary ratio
of specific heats, the values of Mb and Jb are the greatest real roots of the equations

(3 − 4ε)2M8
b − 8(3 − 6ε + 4ε2)M6

b + 8(1 − 3ε + 4ε2)M4
b + 32ε(1 − ε)M2

b + 16(1 − ε)2 = 0,

4∑
k=0

akJk
b = 0,

a4 = (1 − ε)(3 − 4ε)(3 + 5ε), a3 = −4(1 − ε)(6 + ε − 3ε2 + 16ε3),

a2 = −2(7 + 36ε − 45ε2 − 94ε3 + 32ε4 − 32ε5), a1 = 4(4 + 11ε + 6ε2 + 39ε3 + 52ε4 − 16ε5),

a0 = 13 + 62ε + 85ε2 − 16ε4 + 48ε5.

Curve 0 in Fig. 2a determines the jet pressure ratios at which a shock wave of zero curvature emanates from the
nozzle lip.

At a Mach number Mc =
√

2(1 − ε)/(1 − 2ε) = 1.581, the curvature of the shock wave degenerating into a
weak discontinuity becomes negative for the first time (point c1 in Fig. 2a). Another value of intensity of the shock
wave of zero curvature at the same Mach number is JΓ(Mc) = 1/(1 − 2ε) = 1.5 and corresponds to the point c2 in
Fig. 2a. At M > Mc, the intensity of the shock wave of zero curvature rapidly increases (curve 0 in Fig. 2a) and
reaches the value Jd = J∗(Md) = 2.699 for Md = 1.787. The flow behind the shock wave, which is straight in the
vicinity of the nozzle lip, becomes subsonic. The Mach number Md and intensity Jd are the greatest real roots of
the equations

2(1 − 4ε)(1 − 2ε)M6
d − (17 − 73ε + 96ε2 − 64ε3)M4

d + 4(1 − ε)(9 − 24ε + 32ε2)M2
d − 16(1 − 4ε)(1 − ε)2 = 0,

2(1 − 2ε)J3
d − (1 + ε + 8ε2)J2

d − (3 + 5ε)Jd − (1 − ε)(1 + 3ε) = 0.
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At the Mach number Me = 1.974, the point of zero curvature reaches a value Je = Jl(Me) = 3.549 and Me

and Je being the greatest roots of the equations

(1 − 2ε)M6
e − (1 + 7ε − 16ε2 + 16ε3)M4

e − 8(1 − ε)(1 − 3ε + 4ε2)M2
e + 8(1 − 2ε)(1 − ε)2 = 0,

(1 − 2ε)J3
e − ε(3 + 4ε)J2

e − (5 + 2ε + 4ε2)Je − (2 + 5ε − 2ε2) = 0.

In the limit (M → ∞), the values of curvature of special shocks are negative

lim
J=JΓ

M→∞

K−
σ = lim

J=J∗
M→∞

K−
σ = lim

J=Jl

M→∞

K−
σ = − 1 − 2ε

(1 − ε)
√

1 + ε
,

lim
J=Jmax

M→∞

K−
σ = − 1

1 − ε
= −1.2,

and it is only the curvature of the shock wave degenerating into a weak discontinuity (J → 1) that tends to zero.
The intensity of the shock wave of zero curvature tends to infinity; hence, we obtain

lim
M→∞

J

M2 =
3 − ε − 4ε2

3(1 − ε)
= 1.089.

At high Mach numbers, the special intensities of the shock waves are such that

lim
M→∞

JΓ

M2 = lim
M→∞

J∗
M2 = lim

M→∞

Jl

M2 = 1, lim
M→∞

Jp

M2 =
3(1 + ε)
3 + ε

= 1.105.

The point of zero curvature at high Mach numbers corresponds to a strong shock wave with a subsonic flow behind
the latter.

The intensity Jmin of the shock wave of minimum curvature, vice versa, corresponds to a supersonic flow in
the compressed layer (see curve 6 in Fig. 2a), At high Mach numbers, it is described by the relation

lim
M→∞

Jmin

M2 =
(1 + ε)(9 + 9ε + 2ε2 − 2ε

√
18 − 18ε + ε2 )

3(3 − 2ε − ε2)
= 0.913,

and the dimensionless curvature of this shock tends to the value

lim
J=Jmin

M→∞

K−
σ =

√
81 − 243ε + 333ε2 − 261ε3 + 88ε4 + 2ε5 − Q

3(3 + ε)3(1 − ε)3
= −0.767,

Q = 2ε(1 − ε)(18 − 18ε + ε2)3/2.

Changes in Intensity of the Incident Shock Wave in the Vicinity of the Nozzle Lip. The change
in shock-wave intensity in the vicinity of the nozzle lip is described by the derivative dJ/dτ [see (4)] in the direction
downstream from the lip. An analysis of this quantity is necessary to describe the flow in the compressed layer,
because the shock-wave intensity unambiguously determines the total pressure losses and the increase in entropy of
the gas on the shock wave:

I = p02/p0 = (JΩγ)−(1−ε)/(2ε), ∆S = cv ln (JΩγ). (5)

Here cv is the heat capacity at constant volume and Ω = (1 + εJ)/(J + ε) is the ratio of specific volumes behind
and ahead of the shock in accordance with the Rankine–Hugoniot shock adiabat. Hence, the derivative dJ/dτ shows
the direction of variation of the total pressure and the increase in entropy of the gas in passing from one streamline
to another in the compressed layer; a similar derivative of entropy proportional to dJ/dτ characterizes the absolute
value of the velocity vorticity vector in the compressed layer.

According to Eq. (4), the derivative dJ/dτ is proportional to sin θ/r in the model of the flow from a source.
In particular, the intensity of a straight shock wave in a uniform flow with θ = 0 remains unchanged until the
reflection point. In what follows, we consider the dimensionless quantity WJ = (r/ sin θ) dJ/dτ independent of the
radius of the nozzle-exit cross section and of the nozzle half-angle.
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The dimensionless derivative WJ equals zero (Fig. 4) both in the case of formation of the normal shock
(J = Jmax) and in the case of degeneration of the shock wave into a weak discontinuity (J → 1). The latter
indicates the transition from the shock attached to the nozzle lip to a detached shock at a certain distance from
the nozzle lip as the overexpansion transforms to an isobaric flow.

For M <
√

2, the value of WJ is negative and monotonically decreases in the interval (1; Jp) tending to an
infinite value as J → Jp (Fig. 4a). Hence, the shock waves formed in an overexpanded jet with M <

√
2 have a

tendency to attenuation when approaching the plane of symmetry. In the interval (Jp; Jmax), vice versa, they are
amplified and tend to become normal shocks on the plane of symmetry.

For M >
√

2 and small or moderate intensity of the shock, the derivative is dJ/dτ > 0 (Fig. 4b); hence, these
shock waves are amplified in the vicinity of the nozzle lip. The shock waves with the zero value of the derivative
dJ/dτ are described by Eq. (1). The intensity of shock waves satisfying the inequality JΓ < J < Jp still decreases
with distance from the nozzle lip. As the intensity J∗ corresponding to the critical flow behind the shock satisfies
this inequality (JΓ < J∗ < Jp), the flow behind the attenuating shock can be either supersonic or subsonic. The
behavior of strong (J > Jp) shock waves remains unchanged with variation of the Mach number.

The maximum values of the function WJ in the interval (1;JΓ) correspond to shock waves with the maximum
growth rates of intensity in the vicinity of the nozzle lip. The jet pressure ratios n = 1/J in jets with the most
rapidly amplified shock waves are shown by curve 7 in Fig. 2a. At high Mach numbers, the intensities of these
shocks and their derivatives WJ tend to infinitely high (of the order of M2) values and are characterized by the
relations

lim
M→∞

J

M2 = L1, lim
M→∞

WJ

M2 = 0.098,

where L1 = 0.638 is the unique real root of the equation

3(3 + ε)L3
1 − 2(12 + 12ε + ε2)L2

1 + 3(1 + ε)(7 + 4ε)L1 − 6(1 + ε)2 = 0.

The flow behind the shock waves with the highest growth rate of intensity is supersonic.
Thus, curves 4 [n = nΓ(M)] and 5 [n = np(M)] in Fig. 2a separate the ranges of jet pressure ratios of

an overexpanded jet in which the shock wave arriving at the plane of symmetry is amplified or (in the region
between these curves) attenuated. For M <

√
2, the shock waves emanating from the nozzle lip are attenuated

for all jet pressure ratios in the interval np < n < 1 that can be encountered in practice. The calculation by the
method of characteristics [10] performed for jets with n = 0.8 (J = 1.25), θ = 15◦, and different Mach numbers
of the exhausting jet shows that the smaller the Mach number, the longer the interval of the shock-wave intensity
decrease. For a Mach number (in our case, M = 1.5) satisfying Eq. (1), the shock-wave intensity monotonically
increases up to the plane of symmetry.

A change in the ratio of specific heats of the gas does not induce any qualitative changes in the solution of
the problem of the shock-wave intensity derivative.

Extreme Values of Flow Vorticity. As it follows from relation (5), the total pressure losses on the shock
with a fixed value of γ is a function of the shock-wave intensity only. The total pressure gradient

N32 =
∂ ln p0

∂n
=

(1 − ε)(J − 1)2
√

(Jmax − J)(J + ε) + (1 + εJ)2

2J(J + ε)(1 + εJ)2
dJ

dτ
,
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Fig. 5. Curvature of the jet boundary for M < Mg (a) and M > Mg (b).

which shows the change in flow vorticity, has the same sign as the function WJ (M, J) considered above. As the jet
pressure ratio changes, the flow vorticity exerts the behavior illustrated in Fig. 4. If a supersonic jet is close to the
isobaric state (J → 1), flow vorticity is very low. Zero values of flow vorticity are observed behind the normal shock
(J = Jmax) and only at one point: root of the function WJ (J) in the interval J ∈ (1; Jp) for M <

√
2.

The extreme points of the function N−
32(J) = rN32/ sin θ are observed for M >

√
2. For M < 2.569, in

contrast to the extreme points of the function WJ (J), these points correspond to higher intensities of the incident
shock (and lower jet pressure ratios). The extreme points of two functions coincide only at one combination of the
Mach number and jet pressure ratio (M = 2.569 and J = 3.825), and the maximum flow vorticity is further reached
with lower shock-wave intensities (curve 8 in Fig. 2b).

The jet parameters corresponding to the extreme values of vorticity are found by solving algebraic equations
of the eighth power in terms of the jet pressure ratio and of the fourth power with respect to the square of the jet
Mach number in the vicinity of the nozzle lip. The values of vorticity N−

32 tend to zero at the special points J∗(M),
JΓ(M), and Jl(M) as M → ∞. At the extreme point corresponding to the intensity J ≈ M2 at high Mach numbers,
the dimensionless vorticity in the compressed layer tends to A = 26.670, which is the root of the equation

3εA4 − (9 + 22ε − 22ε2)A3 − (14 + 31ε + 44ε2)A2 − (1 + 20ε + 22ε2 + 24ε3)A − 2ε(1 + 4ε) = 0.

Curvature of the Boundary of an Overexpanded Jet. The jet boundary in the vicinity of the nozzle
lip is normally upward convex (see, e.g., Fig. 1). The dimensionless curvature K−

τ (M, J) = rKτ/sin θ becomes
negative, in particular, in the case of incidence of a weak shock wave

lim
J→1

K−
τ (M, J) = −1/

√
M2 − 1,

which is also supported by the conclusions made from the conditions of compatibility on a weak discontinuity [7]. In
the limit (M → ∞), the curvature of the jet boundary behind a weak shock wave tends to zero; at the special points
J∗(M), JΓ(M), and Jl(M), it tends to −1. Exceptions are cases of very strong overexpansion (regions on the right of
the infinite discontinuity of curvature at J = Jp in Fig. 5). In particular, the curvature of the boundary equals zero
behind the normal shock [at J = Jmax(M)]; it is positive at low Mach numbers in the interval J ∈ (Jp; Jmax) and
has a root at M > Mg, where Mg =

√
(4 − 3ε)/(1 − 3ε) = 2.646. The zero values of curvature of the jet boundary

are described by the relation (curve 9 in Fig. 2b)

M =

√
3(1 − ε)J3 + 2(3 + ε − 2ε2)J2 − (5 − 13ε)J − 4ε(1 − 2ε) +

√
D

2[(3 − ε)J2 + (1 + 9ε)J + 4ε2]
,

D = 9(1 − ε)2J6 − 4(1 − ε)(3 − 7ε + 6ε2)J5 − 2(5 + 22ε − 43ε2 + 16ε3 − 8ε4)J4

− 4(3 − 8ε + 3ε2 − 14ε3)J3 + (41 − 2ε + 41ε2 + 16ε3)J2 + 8ε(7 + ε)J + 16ε2

and obey the law

lim
M→∞

J

M2 =
3 − ε

3(1 − ε)
= 1.133.
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Fig. 6. Isolines of the dimensionless curvature K−
τ = rKτ/ sin θ.

The curvature K−
τ at the minimum point has a finite limit as M → ∞ (K−

τ → −0.207), and the shock-wave intensity
at this point is such that J/M2 → C, where the value C = 1.153 is determined by the equation

4∑
k=0

HkCk = 0,

H4 = 3(3 + ε)(1 − ε)2, H3 = −2(1 − ε)(18 + 3ε − 13ε2),

H2 = 2(1 − ε2)(27 − 8ε2), H1 = −2(1 + ε)(18 − 3ε − 13ε2), H0 = 3(3 − ε)(1 + ε2).

The minimums and the zero values of curvature of the jet boundary for J ∈ (Jp; Jmax] are shown as curves 9
and 10 in Fig. 2b, respectively, which almost merge with curve 1 corresponding to normal shocks.

The curvature of the boundary is an important parameter affecting the development of the Taylor–Görtler
instability. It is seen from Fig. 6 that the dimensionless curvature K−

τ significantly depends on the Mach number,
decreasing in absolute value with increasing Mach number. The transition to a subsonic flow behind the shock
[n = n∗(M)]; curve 1] does not affect the curvature of the boundary, and an infinite discontinuity occurs at
n = np(M). If the exhaustion with n ∈ (nmax(M); np(M)) (region between curves 2 and 3) does occur, a small
fluctuation of the jet pressure ratio seems to be able to significantly distort its boundary.

Change in Static Pressure behind the Shock Wave. The derivative of static pressure Pw

= (∂ ln p/∂τ) (r/ sin θ) behind the shock is determined, first, by the decrease in pressure ahead of the shock wave
as the latter moves away from the nozzle lip and, second, by a possible increase in shock-wave intensity and the
corresponding increase in pressure behind the shock. The function Pw(M, J) is determined by two terms

Pw(M, J) = −
√

Jmax − J

Jmax + ε

γM2

M2 − 1
+

1
J

WJ(M, J),

each describing the effect of one factor. In particular, as J → 1 (WJ ≡ 0), the pressure behind a weak shock wave
decreases as

Pw(M, J = 1) = −γM/
√

M2 − 1;

this decrease is especially pronounced at low Mach numbers. Behind the normal shock, we have Pw(M, Jmax) = 0.
At low Mach numbers (Fig. 7a and b), the function Pw is rigorously negative for all J ∈ [1; Jp), i.e., in all

cases of shock-wave shedding directly from the lip, which are encountered in practice, and is non-negative in the
interval (Jp; Jmax]. For a Mach number
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Fig. 7. Derivative of static pressure for M < Mh (a), Mh < M < Mg (b), and M > Mg (c).

Mh =
√(√

9 − 4ε + 4ε2 − 3 + 6ε
)
/(4ε) = 1.166,

the function Pw(J) has a maximum (Fig. 7b). Curve 11 in Fig. 2b shows the jet pressure ratio at the point of
this maximum. The derivative of pressure at the maximum point is still negative and tends to −0.519 as M → ∞.
Hence, the static pressure in the compressed layer of the jet behind the shock wave normally decreases.

For M = Mg =
√

(4 − 3ε)/(1 − 3ε) = 2.646, a second extreme point of the function Pw is formed: it lies
in the region of high intensities (Fig. 7c). The function of pressure at the new minimum point tends to −0.050 as
M → ∞. At high Mach numbers, the extreme points are determined by the limits

lim
M→∞

J

M2 = C1,2, C1,2 =
9 − 13ε ∓ 4ε

√
ε(3 + ε − 3ε2)

3(3 − 2ε + ε2)

(C1 = 1.030 and C2 = 1.151). Thus, the shock-wave intensity at the first extreme point, which is equal to unity at
M = Mh, becomes slightly higher than J∗(M), JΓ(M), and Jl(M) at high Mach numbers. The function Pw tends
to the same value (−√

ε(1 + ε)/(1 − ε) = −0.529) at all these special points as M → ∞. Curves 12 and 13 in
Fig. 2b, which show the values of the found minimums and roots of the function Pw(J) in strongly overexpanded
jets almost merge with curves 9 and 10, which show the specific properties of the curvature of the jet boundary,
and with curve 1 corresponding to the normal shock. For γ > 2 (ε > 1/3), the second extreme point is not formed.

Change in the Mach Number in the Compressed Layer. The change in the Mach number in the
compressed layer behind the shock wave is also induced by two factors: gas expansion ahead of the shock and,
hence, an increase in the Mach number as the shock moves away from the nozzle lip, on one hand, and a possible
increase in shock-wave intensity with a corresponding decrease in the Mach number behind the shock, on the other
hand. Therefore, the conclusions of the previous Section are qualitatively valid for the description of changes in the
Mach number in the compressed layer in an overexpanded jet as well.

As was found above, the shock-wave intensity in the vicinity of the nozzle lip at low Mach numbers either
decreases or weakly increases. Therefore, the function M′

w(J) is negative for small M in the entire half-interval
[1; Jp) and experiences an infinite discontinuity as J → Jp (Fig. 8a). At the point J = Jmax(M), the derivative is
M′

w ≡ 0.
For a Mach number

Mi =
√(

6ε − 1 +
√

1 + 20ε + 4ε2
)
/(8ε) = 1.257

there arises a local minimum of the function M′
w(J) at the point J = 1 (Fig. 8b). With increasing Mach number,
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Fig. 8. Derivative of the Mach number behind the shock for M < Mi (a) and M > Mi (b).

the minimum point is shifted toward the increase in shock-wave intensity (curve 14 in Fig. 2b) and is described by
the limit

lim
M→∞

J

M2 = D,

where D = 0.641 is the root of the equation

(3 + ε)D4 − 2(1 − ε2)(3 − ε)(2 + ε)D3 + 2(1 + ε)(9 + 5ε − 8ε2 − 2ε3)D2 − 6(2 − ε)(1 + ε)3D + 3(1 + ε)3 = 0.

In contrast to the cases J → 1 and J → Jp, the function M′
w at the point of its local minimum is finite even as

M → ∞ (its limit is 0.258 for γ = 1.4). The limiting values of the function M′
w for special shock-wave intensities

are also finite:

lim
M→∞
J=JΓ

M′
w = lim

M→∞
J=J∗

M′
w = lim

M→∞
J=Jl

M′
w =

√
ε

(1 − ε)
√

1 + ε
= 0.454.

Thus, the Mach number behind the shock wave emanating from the nozzle lip in a plane overexpanded jet
increases as the jet moves away from the nozzle lip in all cases important for practice. This means, in particular,
that the flow in the compressed layer, at least in the vicinity of the nozzle lip, is supersonic behind a shock wave of
intensity J∗(M), if the Mach number at the jet boundary becomes equal to unity.

According to the results of [7], a local decrease in static pressure and an increase in the Mach number behind
the shock wave normally occur in axisymmetric overexpanded jets as well.

Additional Comment. Flow separation from the nozzle walls in an excessively overexpanded flow prevents
the occurrence of the flow features described above. As was noted in [11], the critical intensity J = 1/n of the shock
wave causing separation of a turbulent boundary layer is estimated according to Nekrasov as

J = 1 + 0.2γM2(M2 − 1)−1/4

or according to Gedd as

J = [(1 + 0.5(γ − 1)M2)/(1 + 0.32(γ − 1)M2)]γ/(γ−1).

Curves 15 and 16 in Fig. 2a and b corresponding to these jet pressure ratios show that some specific features
of the flow usually do not occur at moderate Mach numbers. The majority of the indicated features (change in
the direction of convexity of the shock wave, decrease in its intensity, etc.), however, correspond to the range of
low Mach numbers, where flow separation occurs extremely rarely. In addition, the currently existing methods of
boundary-layer suction shift the separation to the region of lower jet pressure ratios.

Conclusions. It was theoretically established that many parameters of an overexpanded jet in the vicinity
of the nozzle lip acquire extreme values. This circumstance can be used to optimize jet flows and control their
acoustic field, vortex formation, and flow separation.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00713).
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